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The structure of weakly compressible grid generated turbulence 

by 
G. Briassulis, J.H. Agui and Y. Andreopoulos 

Experimental Aerodynamics and Fluid Mechanics Laboratory 
Department of Mechanical Engineering 

City College of CUNY 
New York, New York 10031 USA 

Abstract 

A decaying compressible nearly homogeneous and nearly isotropic, grid generated turbulent flow has been set-up in 
a large scale shock tube research facility. Experiments have been performed by using instrumentation with spatial 
resolution of the order of 7 to 26 Kolmogorov viscous length scales. A variety of turbulence generating grids provided 
a wide range of turbulence scales with flow Mach numbers ranging from 0.3 to 0.6 and turbulent Reynolds number up 
to 700. The decay of Mach number fluctuations was found to follow a power law similar to that describing the decay 
of incompressible isotropic turbulence. It was also found that the decay coefficient and the decay exponent decrease 
with increasing Mach number while the virtual origin increases with increasing Mach number. A mechanism possibly 
responsible for these effects appears to be the inherently low growth rate of compressible shear layers emanating from 
the cylindrical rods of the grid. Measurements of time-dependent, three dimensional vorticity vector were attempted 
for the first time with a 12 wire miniature probe. This also allowed estimates of dilatation, compressible dissipation and 
dilatational stretching to be obtained. It was found that the fluctuations of these quantities increase with increasing Mach 
number of the flow. The time-dependent signals of enstrophy, vortex stretching/tilting vector and dilatational stretching 
vector found to exhibit a rather strong intermittent behavior which is characterized by bursts of high amplitudes with 
values up to 8 times their r.m.s. followed by less violent periods of time. Several of these bursts are evident in all signals 
suggesting the existence of a dynamical flow phenomenon as a common cause. CO 
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1. Introduction 
A fundamental understanding of compressible turbulence in the absence of shock wave interactions, is 

necessary for the development of supersonic transport aircraft, combustion processes, as well as high speed rotor flows. 
Compressibility effects on turbulence are significant when the energy associated with dilatational fluctuations is large >^ 
or when the mean flow is compressed or expanded. Most of the previous work on compressible turbulence has been 
carried out in shear layers (see Gutmark et al, 1995, for the most recent review on compressible free shear flows) or (/W 
boundary layers (see Spina et al., 1994). Previous work on homogeneous and isotropic compressible turbulence (see .rv 
figure 1 for a typical flow schematic) is very limited although this flow is the best candidate for testing calculation 
methods and turbulence modeling. The reader is referred to the work by Lele (1994) where different contributions to ^"^ 
the understanding of compressibility effects on turbulence are reviewed in detail. A substantial amount of experimental 
work dealing with the incompressible grid generated turbulence already exists (see Compte-Bellot and Corrsin, 1966, *v#v 
1971). The effects of grid and perforated plates as flow straighteners on the free stream turbulence was studied by Tan- *• 
Atichat et al.(1982) for Reynolds number based on mesh size ReM up to 735. They found that the performance of the p^I 
grid is depended on the characteristics of the incoming flow. For larger range of mesh Reynolds number ReM ranging 
from 12800 to 81000, Frenkiel et al. (1979) performed experiments where they observed that data exhibit a high degree 
of similarity. Analysis of the higher order correlations and moments on the turbulent velocity components revealed that 
the turbulent fluctuations is of non-Gaussian character. Tavoularis et al., (1978) presented a comprehensive study of 
values of the skewness of velocity derivative for a variety of flow fields and Rex. This study indicated that the skewness 
of the velocity derivative reaches a maximum at Rex=5 and then gradually decreases as the turbulent Reynolds number 
increases. 
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Grid turbulence at large mesh Reynolds number (1.2xl05 to 2.4xl06) was studied by Kistler and Vrebalovich 
(1966). To avoid compressibility effects the mean flow was kept below 60 m/sec. The flow field under investigation 
was anisotropic but nevertheless they concluded that if the -5/3 slope is to be used for the spectral curve then a minimum 
turbulence Reynolds number (ReA) of 300 is required. From the literature review it is evident that in all of the above 
studies on grid generated turbulence compressibility effects were absent or undesirable. One of the first attempts to 
generate isotropic turbulence was described by Honkan and Andreopoulos (1992) and Honkan, Watkins and 
Andreopoulos (1994) who set up a flow with ReA= 1000. Recently Budwig et al (1995) and Zwart et al. (1996) work 
with compressible streams for three different Mach numbers in a supersonic wind tunnel. The decay coefficient for the 
lowest Mach number of 0.16 was found to be -1.24 and for the highest Mach number of 1.6 was -0.49. Inhomogeneity 
across the test section prevented them from measuring decaying turbulence. 

The present experimental work is a fundamental study of compressibility effects in grid generated turbulence 
for flows with Mach numbers ranging from 0.3 to 0.6. The measurements were carried out inside the induced flow 
behind a traveling shock wave in a shock tube facility. Time-dependent measurements of one, two or three velocity 
components have been carried out. Measurements of the vorticity vector and the full dissipation tensor at limited 
locations inside the flow have been also attempted for the first time in compressible flows. 

It should be mentioned that in the present work there is no interaction of the flow with the shock wave which 
causes sudden compression of the flow field, as it was in our previous work (Briassulis and Andreopoulos, 1994, 1996). 

2. Experimental set-up 
The experiments were performed in the Shock Tube Research Facility (STURF), shown in figure 2a, which 

is located at the Mechanical Engineering Department of CCNY. The large dimensions of this facility, 1 ft in diameter 
and 88 ft in length, provide an excellent platform for high spatial resolution measurements of turbulence with long 
observation time of steady flow. The induced flow behind the traveling shock wave passes through a turbulence 
generating grid properly installed in the beginning of the working section of the facility. Several turbulence generating 
grids were used at three different flow Mach numbers. All grids had about the same solidity but different mesh sizes 
which provided a large variety of length scales. The velocity of the induced flow behind the shock wave, depends on 
the rupture pressure of the diaphragm, i.e. driver strength. The working (test) section is fitted with several hot-wire and 
pressure ports. Thus pressure, velocity and temperature data can be acquired simultaneously at various locations 
downstream from the grid (see figure 2b), and therefore reduce the variance between measurements. High frequency 
pressure transducers, hot wire anemometry and Rayleigh scattering techniques for flow visualization have been used 
in the present investigation. 

To assess the flow quality in the facility several tests were carried out. First the shock wave was visualized in 
order to check its inclination and planform by using a non intrusive optical technique using a YAG laser emitting at the 
UV range and a UV sensitive, 16 bit CCD camera made by ASTROMED Corporation. Second the flow homogeneity 
was checked by a hot-wire rake constructed for simultaneous acquisition of velocity and temperature data at various 
radial positions. Details of an extensive evaluation of the flow quality can be found in the work of Briassulis et al. 
(1996). 

To resolve simultaneously two dimensional velocity components with hot wires, a cross wire (X-wire) 
arrangement was used. New three-wire probes were designed and custom built by AUSPEX Corp. Six different three- 
wire probe assemblies were used concurrently at different downstream locations, all adjustable to different lengths, each 
carrying 2 hot-wires in an X configuration and one cold-wire for simultaneous velocity and temperature measurements 
respectively. The three-wire probes were equipped with 5 um Platinum/Tungsten wires for velocity measurements and 
with a 2.5 urn Platinum/Tungsten wire for temperature measurements. To eliminate any wake effects from upstream 
probes on any downstream, all of the probes were staggered at different distances from the tube wall and 90 degrees 
apart every other probe. The cross wires were driven by DANTEC anemometers model CTA56C01 and the temperature 
wires were connected to EG&G model 113 low noise, battery operated pre-amplifiers/filters. The output signal of the 
cold-wire was digitally compensated for thermal lag up to frequencies of interest. For more details on the hot-wire 
techniques applicable to shock tubes see Briassulis et al. (1995) where estimates of uncertainties in the measurements 
are also given. 

Time dependent pressure fluctuations were obtained by 6 miniature high frequency Kulite pressure transducers 



installed on the shock tube wall. 
During each experiment all signals were acquired simultaneously with the ADTEK data acquisition system. 

The ADTEK AD830 board is a 12 bit EISA data acquisition system, capable of sampling simultaneously 8 channels 
at 333 KHz each channel. Three of those boards are currently available providing 24 simultaneous sampled channels 
at 333 KHz per channel. It should be mentioned that no sample-and-hold units were used in the present data acquisition 
since each channel was dedicated to an individual Analog to Digital converter. 

This experimental set-up provided time dependent measurements of two velocity components, temperature 
and wall pressure at several locations of the flow field simultaneously. In addition, time dependent three-dimensional 
vorticity measurements were carried out by using a new vortcity probe (see Andreopoulos and Honkan, 1996 and 
Honkan and Andreopoulos, 1997). Details of this technique are given in section 3 below. 

The bulk flow parameters of the experiments performed are summarized in table 1 and include the grid mesh 
density, the mesh size M, the flow Mach number Mnow, the Reynolds number based on mesh size ReM, the Reynolds 
number based on Taylor's microscale X, Re* and the solidity of the grids o. The grids were selected so that the open area 
is higher than the corresponding sonic area for a given pressure ratio/Mach number. 

Grid(Meshes/in) M (mm x mm) 

5.1x5.1 

0" Mflow ReM Rex 

5x5 0.37 0.371 59654 222 

5x5    ; 5.1x5.1 0.37 0.477 86315 250 

5x5 5.1x5.1   ; 0.37 0.576 102421 325 

4x4 6.35x6.35 0.44 0.354 68208 223 

4x4 6.35x6.35 0.44 0.446 105389 277 

4x4 6.35x6.35 0.44 0.594 132921 355 

3x3 8.5x8.5 0.39 0.321 81687 224 

3x3 8.5x8.5 0.39 0.474 124203 316 

3x3 8.5x8.5 0.39 0.564 215043 654 

2x2    | 12.7x12.7 0.38 0.346 137319 267 

2x2 12.7x12.7 0.38 0.436 169025 405 

2x2 12.7x12.7 0.38 0.592 261667 737 

1.33x1.33 19.05x19.05 0.26 0.368 200371 270 

1.33x1.33 19.05x19.05 0.26 0.504 295721 550 

1.33x1.33  I 19.05x19.05 0.26 0.607 398661 680 

Table 1: Bulk flow parameters of the experiments performed. 

3. The vorticity probe 
A new multi hot-wire probe has been developed which is capable of measuring velocity-gradient related 

quantities in non-isothermal flows or in compressible flows. The present probe has been build upon the experience 
gained with vorticity measurements in incompressible flows (see Honkan and Andreopoulos, 1997) by using a probe 
with nine wires. The present probe which consists of 12 wires is a modification of the original design by Honkan and 
Andreopoulos (1997) hereafter referred as HA. The three additional wires were operated in the so called Constant 
Current Mode and used to measure time dependent temperature. 

Since the probe essentially consists of a set of three modules it is necessary to provide several key features of 
the individual hot-wire modules. Each module contains three hot-wires operated in the Constant Temperature Mode 
(CTM) and one cold-wire sensor operated in the Constant Current Mode (CCM). Each wire of the triple wire sub- 



module is mutually orthogonal to each other, thus oriented at 54.7 degrees to the probe axis. Each of the 5 urn diameter 
tungsten sensors is welded on two individual prongs which have been tapered at the tips. Each sensor is operated 
independently since no common prongs are used. Each of the 2.5 um diameter cold-wire was located on the outer part 
of the sub-module. 

The hot-wire output voltage E is related to the effective cooling velocity, Ueff through the well known King's 
law: 

<T   -T„> 
= A 1° 

T 
r 

a 

+ B 1° 
T 

r 

b 

where Tw is the hot-wire temperature, T „is the total temperature of the flow and T^sa reference temperature, the 
ambient temperature in the present case. The values of the exponent a and b were taken as suggested by Kovasznay 
(1950) a=b=0.768. The effective velocity is related to UN, UT and UB, the normal, tangential and binormal components 
of the velocity vector respectively, by 

ucff = U
N 

+k2UT +h2UB 

where k and h are yaw and pitch coefficients. Details of the techniques associated with the use of triple wire probes can 
be found in Andreopoulos (1983a) while estimates of errors related to probe geometry and turbulence intensity are 
described by Andreopoulos (1983b). 

The probe, shown schematically in figure 3 consists of a set of three individual modules with four wire sensors 
each, put together so that the probe remains geometrically axisymmetric. 

In selecting the dimensions of the vorticity probe several conflicting considerations have to be taken into 
account. The individual wire length, the size of the individual sub-module and the size of the overall probe should be 
as a small as possible so that small scales can be resolved adequately since it is known that most of the contributions 
to vorticity come from small scales of turbulence. However, small wire spacing can lead to thermal interference and 
cross talk between the wires. This was of particular concern in the present case because of the high overheat ratio used 
in the experiments. Yaw and pitch tests of the probe were carried out in order to identify any thermal effects on wires 
located in the heated wake of a neighboring wire located upstream. These tests indicated no thermal interference among 
the wires. The reason for this behavior is that the spreading rate of the thermal wakes is reduced in high Reynolds 
number flows. 

The requirement to reduce the probe size had to be counterbalanced with the requirement that the spacing 
between the sub-modules and the individual wires should be finite so that the velocity gradients which were used to 
compute vorticity and strain-rates do not disappear. 

The present probe design differs from that used in the work by HA in the following aspects: 
I. It consists of 12 wires with 3 of them measuring temperature; 
II. The overheat ratio in which the hot-wires were operated was close to 130 %. This high overheat ratio was required 
in order to maintain the heat transfer rate from the wire to the driven flow at substantial levels. 
III. The wire diameter of the velocity sensing wires was 5 urn. This reduced the length to diameter ratio of each wire 
to about 200 which is large enough to suppress end heat conduction effects. Attempts to work with 2.5 urn wires were 
unsuccessful because of substantial strain-gauging effects and wire breakage. 

Velocity calibrations were carried out inside the shock tube by firing the tube at various pressures 
corresponding to Mach numbers anticipated to be found in the flows under investigation. Yaw and pitch calibration of 
the probe was also carried out in-situ. These data help to extend a complete and detailed map of the yaw and pitch 
response of the probe obtained in a low speed wind tunnel to the subsonic range of flow velocities needed in the present 
investigation. 

The digitized signals were processed off-line. The cold-wire signals were first converted to total temperature 
which, together with the hot wire signals were used to obtain instantaneous three dimensional mass fluxes at three 
neighboring locations within the probe. Numerical techniques and algorithms used in the computations of velocity 
gradients were very similar to those described by HA. The only difference is that in the present case mass fluxes and 



their gradients were computed at the centroid of each module instead of velocities and velocity gradients. 
Mass fluxes were further separated into density and velocity by using the method adopted by Briassulis et al. 

(1996). Decoupling density from mass fluxes assumes that pressure fluctuations are small. This is the" weak" version 
of the original "strong Reynolds analogy" hypothesis of Morkovin (1956). The original hypothesis is based on the 
assumption that pressure and total temperature fluctuations are very small. In the present work, total temperature was 
measured directly and therefore no corresponding assumptions were needed. The pressure, however, was measured at 
the wall and not at the location of the hot wire. The mean value of this pressure signal was used to separate the density 
and velocity signals since no mean pressure variation has been detected across a given section of the flow. The 
procedure involves an expression for mass flux, m,, in terms of total temperature, T0, and pressure, p, at the centroid of 
each module 

(3.3) 
n>r pus RT 

F Ui 

R T0  " 
ukuk 

2c 
p 

U;is the instantaneous veloriryrornponent,M U( = IL+u, 

An iterative scheme was used to decouple density and velocity. During the first iteration it was assumed that the quantity 
(u2

2 +u3
2)/2cp, where u2 and u3 are the velocity components in the spanwise and normal directions respectively, is 

substantially smaller that the quantity T0 -U,2/2cp. Then the above relation (3.3) can be rearranged to obtain a quadratic 
equation for Uh 

Rm 

2c 
U,2 + pU. - m,RT0 = 0 (3.4) 

p 

For each digitized point, T0 and rri; were available instantaneously at the centroid of each module while pressure was 
measured at the wall. If the thin shear layer approximation is invoked then the pressure at the centroid of the module 
which appears in (3.4) can be substituted by the mean pressure at the wall. This assumption is justified because pressure 
fluctuations are extremely small and therefore their impact on velocity fluctuations is minimal. 

The discriminant of the above equation (3.4)       A = p2 + 2m;2R2T0/cp      is always positive and therefore 

there are two real roots: one positive and one negative. The negative root is unrealistic and only the positive root was 
accepted. The longitudinal velocity component U, was computed first while the other two components were obtained 
from the mass flux ratios as u2=m2/m,U, and u3=m/m jU , These values provided the first estimate of the velocity 
components which were used to obtained a better estimate of the Uk

2 /2cp in (3.3) which subsequently was used to 
improve the estimate of the velocity components. This iterative scheme required no more than two iterations for 
convergence. 

4. Qualification tests 
The newly designed probe has been evaluated by carrying measurements of vorticity and turbulent stresses in 

the incompressible boundary layer flow where the data of HA were obtained. This allowed a direct comparison of the 
present data obtained at Re6=5300 with the data of HA obtained at Ree=2800. 

The bulk flow parameters of the boundary layer experiments are given in table 2: 



Ue(m/s) Boundary layer Momentum Ree Friction velocity ut (m/s) 
thickness 5 (mm)      thickness 6 (mm) 

9.1 97 9.21 5,300 0.315 

Table 2: Incompressible boundary layer flow parameters. 

The estimates of the flow scales resolution expressed in Kolmogorov microscale or viscous scales units are 
shown in Table 3. 

Dimension Resolution in Kolmogorov scales 

Wire length i T|w=5 

Separation of sub-modules in 
normal direction 

TIAXI =6 

Separation of sub-modules in 
spanwise direction T|AX2 =8 

Table 3: Spatial resolution estimates in incompressible boundary layer experiment 

The performance characteristics of the present probe is demonstrated in figure 4 where the shear stress -pu,u2 

across the boundary layer, normalized by the wall mean shear put
2, is plotted against the distance from the wall 

normalized by the boundary layer thickness 6, x2/5. Among all the turbulent stresses, shear stress is the most challenging 
quantity to measure accurately. The reason is that this quantity is sensitive to small changes in probe alignment and 
experimental conditions which can increase substantially the uncertainty of the measurements. The data presented in 
figure 4 are the averaged data obtained at the centroid of the probe. The present data are compared with the 
measurements of HA, the data of Bahnt et al. (1991) and the data of Klebanoff (1954) as well as with the Direct 
Numerical Simulation results of Spalart (1988). The present data seems to agree well in the logarithmic and outer 
(x2/S>0.05) region of the boundary layer when compared with previous data. 

Figure 5 shows the distribution of the mean velocity gradient    (öU/öxj)   across the boundary layer as 

measured at the centroid of the probe by time-averaging its instantaneous values. On the same figure 5 the mean velocity 
derivative in the logarithmic law region, 1/KX2

+
 , where K is von Kärmän's constant, is also plotted for comparison. It 

appears that the measured mean velocity gradient data are in very good agreement with those obtained from the log-law. 
The present data are also in good agreement with the data of Honkan and Andreopoulos (1997) (not shown here) which 
were obtained in the same facility at Ree =2790 which is considerably lower than the present one. 

A comparison of the r.m.s. of fluctuations of the three vorticity components across the boundary layer measured 
by the present probe with data obtained by other investigators is shown in figure 6a, 6b, and 6c. These data are scaled 
with the boundary layer thickness 6 and friction velocity ut. The values are compared with the DNS results of Spalart 
(1988) and the experimental results of Honkan and Andreopoulos (1997), Bahnt et al. (1991) and Lemonis (1995), for 
the three vorticity components. Additionally the measurements of Klewicki (1989) are also indicated on the plots for 
the spanwise component. 

The present data for co, are very close to the data of Honkan and Andreopoulos (1997) and those of Balint et 
al. (1991). These three experimental data sets as a group have values considerably greater than the DNS results of 
Spalart (1988). 

The present values of the r.m.s. of the normal vorticity component co2 agree rather well with the data of Balint 
et al. and they are substantially lower than the data of Honkan and Andreopoulos in the outer part of the boundary layer 



x2/ö>0.1 which agree with the measurements of Lemonis (1995). The fluctuations of the dominant component of 
vorticity a>3 as measured by the present probe compare well with the data of Bahnt et al. 

It should be noted that there is a substantial difference in Re6 among all data sets under consideration. The 
present data and the data of Lemonis which correspond to Ree=5,300 and Ree=6,500 respectively represent the higher 
Reynolds number data under comparison while the DNS data of Spalart with Ree=l,410 represent the lower Ree data. 
Several of the differences among the data sets can be attributed to Re6 effects although it is not known how an 
increasing Ree will affect vorticity fluctuations and their averages. It may be expected for instance, that the r.m.s. of 
vorticity fluctuations will decrease in the outer layer of the boundary layer as Ree increases. Evidence to support this 
argument can be found in the r.m.s. values of wall vorticity flux shown in HA, which have one of the strongest ever 
observed Reynolds number dependence of any quantity involving vorticity: for a factor of 3 increase of Ree a decrease 
by a factor 5 in the r.m.s. of wall vorticity flux has been observed. This evidence points to the direction that the r.m.s. 
of oo„ «2 and co3 are expected to decrease with increasing Ree. In fact the present data, if one limits the comparison with 
the HA data only, clearly support this conclusion. This comparison is more meaningful because both data sets were 
obtained in the same wind tunnel facility by almost identical techniques and procedures. Thus, it is very plausible to 
expect that the present data should be lower than the data of HA because of Ree effects. 

The conclusion of the qualification tests of the newly designed vorticity probe is that the probe performed very 
well in the measurements of mean and fluctuating vorticity in turbulent boundary layers as well as in the measurements 
of shear and normal stresses. Comparison of the data with previous measurements was very satisfactory. This provided 
considerable confidence in the use of the probe in weakly compressible, grid generated turbulence. 



5. Isotropie decay relations 
Three characteristic regions can be found in the flow behind a grid. First is the developing region close to the 

grid where rod wakes are merging and production of turbulent kinetic energy takes place. This region is followed by 
one where the flow is nearly homogeneous and isotropic but where appreciable energy transfer from one wave number 
to another occurs. This region is best described by the power law decay of velocity fluctuations 

U' 

/     \ x 

KM 
(5.1) 

where A is the decay coefficient, (x/M)0 is the virtual origin, n is the decay exponent. 
The third region or final region of decay is the farthest downstream of the grid and is dominated by strong viscous 
effects acting directly on the large energy containing eddies. 

Compressible homogeneous and isotropic turbulence has not yet been set-up experimentally and decay laws 

for this case have yet to be established. The turbulent or fluctuation Mach number  Mt=q/c   with q^UjU,)"2, seems 

to be the most appropriate parameter describing compressible turbulence. By extrapolating the validity of the previous 
law into compressible flows one can obtain the power law decay 

M, =B 
x 
M 

(5.2) 

here   B = 3 A M 2
flow   and B, (x/M)0 and n depend on the grid size, mesh Reynolds number (ReM) as well as the mean 

flow Mach number Mflow which simply comprise the initial conditions. 

6. Dissipation rate of turbulent kinetic energy 
The transport equation for the instantaneous kinetic energy Vi U; U; in compressible flows is 

D| ^U.U 

Dt 
-U ap_ 

ldx. 

dx.. 
u.—a 

'dx. 
(6.1) 

where Tjj is the stress tensor x^ = 2nSy ♦^S^ 
which is related to the bulk viscosity ub through A= ub - 2/3 u. 

The above equation can be manipulated to yield 

and where A, is the second coefficient of viscosity 

Dt dx. 
pS..   -  T..S.. r    kk n    l! 

(6.2) 



where the last term on the right hand side contains the dissipation rate of kinetic energy, E, converted into 
thermal/internal energy. The term p Skk represents the work done by pressure forces during compression or expansion 
of the flow. Both terms, the dissipation rate E=ztj S^ and the pressure work term also appear with opposite sign in the 
transport equation for internal energy. While the dissipation rate is always positive at any given point in space and time, 
the pressure-dilatation term can, in principle, be positive or negative. 

The dissipation rate is given by 

dU. du.     dU. 
E=T„—-= T..S.. =2|iS..S.. +A.—-S.—- 

"dx.       " " " "       dxk   "dx. 
(6.3) 

After invoking Stokes hypothesis which suggests that the bulk viscosity is negligible,  ub 

becomes 

0, the above equation 

2   dU. au 
E=2nS..S.. - -\i—-—= 

" "      3    dx„ dx 
(6.4) 

The second term in the right hand side of the above relation represents the additional contribution of compressibility 
to the dissipation rate of kinetic energy. This term disappears in the cases of incompressible flows. Since 
diy dxk 3Um /dxm= (diy dxk)

2 this term is always positive, the negative sign of this term in 6.4 may erroneously 
suggest that compressibility reduces dissipation. This is incorrect because the term S^ SSj also contains contributions from 
dilatation effects which can be revealed if one considers that 

S..S.. 
ij  ij 

-Q.Q, 
au. au. (6.5) 

2   k   k       dx.   dx. 

where Qk Qk is the enstrophy rate. The second term in the right hand side represents the inhomogeneous contribution 
in the case of incompressible flows. In the case of compressible flows, terms related to dilatation can be extracted 
through 
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(duA 
{dxkj 

(du > 
m 

dx 
+ 

( dU. dU.)  '_ i 
dx.   dx. 

\     i       ' J 

- 
'au; (du \\ 

m 

dx \     m 1. 
(6.6) 

Then, the dissipation rate becomes 

4 au.au 
3    dxk dxn 

2^ 
au.au. au.au 

i j k n 

dx. dx.     dx.   dx 
j i k n 

E=n Q.Q  + —ji Skk + 2,1 
3 

au.au.  i J.. 

dx. dx. 
j      i 

(6.7) 

or 
The second term on the right hand side describes the direct effects of compressibility i.e. dilatation on the 
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dissipation rate. It is obviously zero in the case of incompressible flows. 
The first two terms on the right hand side of the last relation are quadratic with positive coefficients and 

positive signs and they are, therefore, always positive. The last term on the right hand side indicates the contributions 
to the dissipation rate by the purely non-homogeneous part of the flow. Its time-averaged contribution disappears in 
homogeneous flows like the present one. This term, in principle, can obtain negative values and thus it can reduce the 
dissipation rate. This does not violate the second thermodynamic law as long as the total dissipation remains positive 
at any point in space and time. It should be noted that the dissipation term appears as a source term in the transport 
equation for entropy. In the present context we will try to evaluate the contribution of the first two terms to the total 

dissipation as it has been computed from our measurements. 
It has been customary in the past, see for instance (Zeman, 1990) to decompose E into a solenoidal part Es, 

which is the traditional incompressible dissipation and the dilatational part Ed. In this case 

E=ES + Edwith Es=n QkQk + 2u 
dx. dx. 

j      i 

Jkk 
andEd=4/3uSkk

2 

Since all the mean velocity gradients are zero in the present homogenous flow the above can be transformed 

into 

4        2 E=n ukok + -n skk + 2(i 
du. du. 
 ;_ j. 

dx. dx{ 

(6.8) 

where the lower case letters represent the fluctuating part only. 
It is also useful to consider the time-averaged turbulent kinetic energy transport equation. This is usually 

expressed in terms of the mass-weighted averages according to Favre (1965). In the present case, velocity fluctuations 
were decoupled from mass fluxes and therefore the transport equation for turbulent energy 'A u; Uj will be used. 
However, reference to the mass-weighted averages will be given when the order of magnitude of various terms 

appearing in the equation is considered.' 

If V is the specific volume defined as V=l/ p then 
1 DV 

V Dt 
'kk 

and equation (6.1) can be 

transformed to yield the transport equation for Vi U; u, after considering that mean pressure and velocity gradients are 

zero in the present flow. 

_ d(u.u./2) 
Uk      ' ' 

ox,. 
U.U.S..    +     pu. 

i   i kk r   l 

dv      avujp       dV UjP 

dx.       dx. dx. 
vps.k + V ps 

3(11^^/2) 

dx~, 

ux. 
3v        dvu^ik       3V uT.k 

cdxk dxk öx, 
-  VT..S-   -  V   T.S.. (6.9) 

In the present context lower case letter represent fluctuations about the mean which is denoted with an over bar. The 
first term on the right hand side represents production of turbulent kinetic energy by the fluctuating dilatation skk which, 
as found in our measurements is very small and it can be neglected. DNS results of Lee et al. (1993) indicated that all 
the pressure transport terms are negligible and they can be ignored. The turbulent transport term du-upjdxi and the 
viscous transport are also found to be negligible. The work of Lee et al. refers to mass-weighted quantities while the 
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present analysis uses the specific volume as an independent variable. However their conclusions can be extrapolated 
to the present context if one considers the relation between fluctuating density p' and fluctuating specific volume v: 

v = ~P' * + VP'        v = i~g'v 

P + p' P 

If the  time-average  product  of the  two  fluctuations  is  small  i.e.      p'v « 1    then V ■=■ —     and 
P 

v- ~P_V . These relations link the fluctuating and mean density with fluctuating and mean specific volume 

P 

and therefore the conclusions of Lee et al. can be invoked to obtain 

3(u u/2) fa                T   öv 1      ' —     _n _L.     vmn -U      \f      v\c —     11   T        Uk_^T~ = pUjäT + vpSkk + v pSkk " UiTikÄT + VVij " v T,jS|j 

Terms containing the fluctuating specific volume v or its derivative are also expected to be small because they are of 
third order. 

Therefore for the present case of homogeneous turbulence 

U        ' '       -   V psk.   - V T..s.. (6.10a) V ps,..   - V T..s.. 
k     dxk 

P kk 

The pressure-dilatation term in the absence of shock waves can also be ignored and therefore 

;dx 
u*?- "   "V Vu (6'10b) 

k 

where   e=E V   and q2 = l/2uiui 

Thus measurement of the convection of q2 by the mean flow can provide a good estimate of the dissipative 
viscous term e and its length scale Le through 

_ü^ = e = £3l (6-11) 
dx Le 

Once the dissipation length scale is obtained then the dissipation rate e as well as the associated micro scales 
(length, time, velocity) can be calculated. The above equation can be transformed to the following relation by non 
dimensionalizing with the mesh size M: 
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EM       3 ötaVü 2 3u' 

Ü3       2 ö(x/M)       2   Le 

M 

IT 

(6.12) 

From this equation (6.12) the decay rate can be calculated using the coefficients of the power law of equation (5.1) 
Substitution of (5.1) in equation (6.12) yields: 

e = —nA 
2 

/     \ x 

V M/o 

(-n-i) IT 
M 

(6.13) 

where A is the decay coefficient, (x/M)0is the virtual origin, n is the decay exponent, U is the mean flow velocity and 
M the mesh size. 
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7. Dissipation rates estimates 
The complete time-averaged dissipation rate of turbulent kinetic energy is, for the present homogeneous and 

isotropic flow 

E=n 0)t0)k + -u sklc 

Direct evaluation of E is requires simultaneous, highly resolved measurements of nine velocity gradients at a given 
location of the flow field as has been described in the previous section. This has been attempted in several locations of 
the present flow field. Traditionally for truly isotropic turbulent flows with moderate or low Mach number fluctuations, 

du the above relation is considerably simplified to     e = 15 v   —       (Tennekes and Lumley, 1972). Thus in the present 

case the dissipation rate e has been computed by five different methods: 
1. From the decay rate of turbulent kinetic energy and the use of equations 6.12 or 6.13. 
2. From frequency spectra of velocity fluctuations after invoking Taylor's hypothesis to compute the three dimensional 
wave number spectrum E(k). The dissipation e can be computed from the integral 

6 ~ 2v   fk2E(k)dk (7.1) 

3. From estimates of [du/dxf    and the isotropic relation     e = 15v(3u/dx)2    . The quantity (3u/ax)2    has been 

computed by differentiating in time the velocity fluctuation signal and invoking Taylor's hypothesis of frozen turbulence 
convection. 
4. From estimates of Taylor's microscale X obtained from autocorrelations of longitudinal velocity fluctuations. Then 

the rms  of the  fluctuations  of the  velocity  gradient       {du/dxf        can be  obtained  independently  from 

— u2 

(du/dx)2=u2/A2   and therefore dissipation can be computed from     e = 15v—     . 
A 

5. By direct measurement of all time-dependent velocity gradients and computation of all the terms appearing in eq 
(6.8). This method can also provide an assessment of all the assumptions made in the previous methods of estimating 
e. The estimates usually obtained from these methods are not identical since the assumptions associated with and the 
uncertainties involved in each of them may differ considerably. The lack of adequate spatial resolution is one of the 
major source of errors and affects each estimate of 8 differently. However even in cases where the estimates of e differ 

by 50% or more the estimates of Le or Kolmogorov's viscous scale  r\ = (v3/e)"'   differ only by 8.5% (see Andreopoulos 

and Honkan, 1996). In the present case the estimates of e obtained from the decay rate of q2 and those obtained from 
Taylor's microscale (autocorrelations) were the most reliable and very close to those obtained by the method #5. Based 
on these estimates of e the spatial resolution of probe used in the present investigation was between 7 t| and 26 T), 
depending on the flow. If one considers that the spatial resolution usually achieved in measurements of compressible 
flows is of the order of 103r| (see Andreopoulos and Muck, 1987; Smits and Muck, 1987) then the present one appears 
to be very satisfactory even if it is compared to values usually achieved in low Reynolds number incompressible flows. 
In the case of vorticity measurements the spatial resolution was also in the range of 7T| to 30T). 

8. Flow homogeneity and isotropy 
The flow visualization experiments and quantitative analysis of velocity and temperature obtained at different 

locations simultaneously across a section of the tube indicated that the flow is homogeneous within 85% of the diameter. 
A full documentation of the flow quality in the shock tube is provided by Briassulis et al. (1995). 
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The flow isotropy was verified directly and indirectly. Direct verification provided by computing the anisotropy 
tensor by of the velocity field 

u u      i 
b.. =-!-i --U.. (8.1) 

u.u      i 

where u is velocity fluctuation about the mean and 5 is the Kronecker delta. Generally, grid generated turbulence tends 
to be anisotropic with the streamwise component slightly larger the cross-stream components. Compte-Bellot and 
Corrsin (1966) were able to generate turbulence very close to an isotropic state by introducing a contraction after the 
grid. However in most experiments where isotropic turbulence has been configured by using biplane grids all turbulent 
quantities have been found to agree reasonably well with isotropic conditions at sufficiently large distances from the 
grid, even with the presence of slight anisotropy which usually decreases with downstream distance from the grid. 

The present data, shown in fig. 7, suggest a rather good degree of isotropy, with minor variations, well within 
established margins. For comparison it should be mentioned that for boundary layers b,,=0.45 and b ,f0.15. 
Anisotropy of the present flow field is compared with one of the latest and most complete study in this matter that of 
Tsinober et al (1992) in incompressible flows. It appears the values of \ in the present experiment are confined within 
the band ±0.075 in the region 30<x/M<60 and within the band of ±0.035 in the region 65>x/M. It is also evident from 
figure 7 that the degree of flow isotropy achieved in the present flow configuration is slightly better than that of Tsinober 
et al. (1992). Both data sets show that anisotropy decrease with downstream distance. 

The anisotropy of the vorticity field is also shown in fig.7. The anisotropy tensor for vorticity is defined 
similarly as 

coco 
-i-8.. (8.2) 

Values of Cjj are compared with the data of Tsinober et al. (1992) which include vorticity measurements. Our present 
vorticity data indicate that the anisotropy of the flow is well within the established limits. The reasonably low values 
of the anisotropic tensors \ and c^, shown in figure 7, establish the isotropic nature of the present flow generated in 
the shock tube. 

Indirect evidence of isotropy was provided by considering the skewness of velocity fluctuations and the 
skewness of velocity derivative (Tavoularis et al., 1978, Mohamed and LaRue, 1990). 

Figure 8 presents the skewness of velocity fluctuations for three mean flow Mach numbers. It appears that 
Su remains constant and close to zero for all measured downstream locations. 

The skewness of velocity derivative Sdu/dx represents the average rate of production of mean square vorticity 
by vortex stretching (Batchelor, 1953) and it is related, according to Tavoularis et al. (1978), to the spectral energy 
transfer which depends on the turbulent Reynolds number, Re^. In the same work, Tavoularis et al. present a 
comprehensive study of values of the skewness of velocity derivative for a variety of flow fields and Re^. From this 
study, if one considers the data obtained from isotropic grid turbulence, it can be observed that SdMx decreases with Rex 

for Rex>5. The theoretical analysis of George (1992) also suggests that Sau/ax varies as ReA"' . Typical values for Sda/Bx 

are shown in figure 9a for three different flow cases of the present investigation together with values obtained by other 
researchers in various turbulent flow fields. The values obtained are between 0.2 and 0.4, a range which is lower than 
the S» value at Rex~5. Determination and calculation of the skewness of velocity derivative is described in detail in 
Briassulis(1996). 

The self-preservation theory of George (1992) suggests that the value of the product Sau/Ä ReA depends on initial 
conditions and asymptotically should vary as ReM"2 as it has also been proposed by Batchelor and Townsend (1947). 
Figure 9b shows values of the ratio Sdu/dx Rek/ ReM"2 plotted against ReM for three different Mach number M„ow as they 
have computed from measured data obtained in the present investigation. The data show that this ratio maintains a 
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reasonably constant value which depends on Mflow. For the lowest Mflow=0.3 this value appears to be 0.28 on average, 
while for Mflow=0.475 this values increases to a new level of 0.32. The value of the constant reduces to 0.21 for 
Mnow=0.6. It should be noted that the data of Batchelor and Townsend show that the asymptotic value of this constant 
is 0.12. The apparent difference between the present data and those of Batchelor and Townsend may be due to the fact 
that all flow cases investigated in the present work can be considered as compressible. Thus compressibility may 
increase the value of this constant. The self-similarity theory of George (1992) has been developed for incompressible 
flows. It remains to be seen whether self-similarity is an attainable state of compressible turbulence. The fact that there 
is a constant value of the ratio Sau/ax Re*/ ReM

1/2 for each Mflow suggests that self-similarity theory may be extended to 
weakly compressible turbulence. 

It can be therefore concluded from all the results presented in this section that direct and indirect evidence 
exists that support the argument that the present flow is nearly homogeneous and isotropic. 

9. Decay of mach number fluctuations 
The typical decay of turbulent kinetic energy data with x/M was fitted with the power law of equation (5.2). 

It should be noted that this relation which describes the decay rate of turbulence is based on entirely empirical grounds. 
In the early experiments of Simmons and Salter (1934) and Dryden (1943) the decay rate of turbulence was found to 
be inversely proportional to x-x0. Subsequent experiments by Corrsin and co-workers indicated that the decay rate 
described by eq (5.1) provides a better fit to the experimental data with n in the range of 1.1 to 1.3 5. 

In the present work, the variables A, (x/M)„, and n were determined so that the residual deviation from the 
original data to be minimized. This way all variables were determined concurrently under the condition of minimum 
deviation. In that respect this approach represents a departure from previous practices where only two of the three 
parameters were determined through a best fit procedure while the third one was fixed. Exceptions to this past practice 
is the work of Mohamed and LaRue (1990). A consequence of this approach is that n can reach any positive value and 
not only >1 as usually is the case in previous works. 

It should be emphasized that the validity of the empirical power-law decay does not necessarily imply isotropy. 
Thus the data used for the best fit procedure had not only to obey the power law but also to be in the region where nearly 
isotropy holds. This was achieved by considering the values of the anisotropy tensor typically shown in figure 7 . 

The present work documents the effects of the mesh size/mesh Reynolds number as well as the flow Mach 
number on the above mentioned variables A, (x/M)0, and n. The importance of these parameters is evident when one 
considers eq (6.13). Once these parameters are available the dissipation rate of turbulent kinetic energy e, the 
corresponding dissipative length scale Lc and Taylor's microscale X can be computed. 

Several grids were used in the present experiments so that the Reynolds number based on the mesh size ReM 

as well as the dominant length scales present in the flow can be varied. The mesh Reynolds number ranged from 35,000 
to 600,000 while the mesh size ranged from 3mm to 25mm. Measurements were obtained at three different driver 
pressures/shock strengths. The bulk parameters of all flow cases are shown in table 1. The Reynolds numbers achieved 
in the present investigation are one of the highest ever attempted in laboratory configurations of nearly homogeneous 
and nearly isotropic turbulence. 

Figure 10 demonstrates the power law decay behavior of all the measured data as it is described by equation 
(5.2). The results of nine experiments are plotted in logarithmic scales in this figure. They include 3 different grids at 
three different pressures/mean flow Mach numbers which are in the subsonic range of 03 <, Mflow ^0.6 placing the flows 
in the weakly to moderately compressible regime. 

Several conclusions can be drawn from their data. First the data shown in this log-log plot indicate that Mach 
number fluctuations Mt decay with downstream distance x/M according to the proposed power law 

M.2: 
x 
M 

x 
M 

(9.1) 

Second, the exponent n and the constant B depend on the grid, Mach number or ReM. Third, the region where isotropy 
starts, depends more on the grid and its solidity than on the flow Mach number or ReM. It also appears that Mt increases 
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with increasing Mach number of the flow Mflow in all experiments with same grid. This behavior is more evident in 
downstream positions with x/M>30. 

The effect of ReM or M, hereafter mentioned as ReM/M, on the coefficient B for three different Mach numbers 
is shown in figure 1 la. It should be mentioned that the coefficient B shown above is related to the coefficient A of the 
velocity fluctuations power law decay through the relation B=3AM2

flow which clearly suggests that B depends on M:
flow. 

In addition to this rather obvious dependence of B on Mnow, there is the yet unknown Mach number dependence of A. 
This is shown in figure lib where the effects of ReM/M on the coefficient A for three different Mach numbers is 
demonstrated. Reynolds number variation was produced by changing the mesh size under a constant velocity i.e. Mach 
number Mflow. 

For the lowest tested velocity flow field (U~ 120 m/sec), which corresponds to a mean flow Mach number of 
0.35, the decay coefficient A or B increases in a non-linear fashion with increasing mesh size M/ReM as shown in figure 
11. As the Mach number increases, B is substantially decreased from the values of the previous case and furthermore 
it appears to be independent of mesh size. The same holds for the highest tested Mach number, where the decay 
coefficient is further suppressed. It can be concluded that the decay coefficient A or B decreases when the flow Mach 
number increases and that it is independent of the mesh size M and Mflow at high Mflow. 

The virtual origin (x/M)0 strongly depends on the mesh size/ReM. This is shown in figures 12 where the position 
of the virtual origin is plotted against ReM for a constant Mach number flow with Mflow=0.6. For all cases it was observed 
that the virtual origin approaches the grid as the mesh size/ReM increases as shown in figure 13, where the results for 
the three Mach number are plotted together for comparison. This behavior is most probably due to increased mixing 
which is associated with increasing ReM. 

The effects of the Mach number at a particular ReM can also be seen in figure 13. The virtual origin is strongly 
affected at the highest Mach number only, while for the medium and low Mflow cases it is moderately affected. At the 
highest Mach number where the associated compressibility effects expect to play a bigger role, the virtual origin moved 
further away from the grid at a given ReM. It is also interesting to observe, in the same figure, that the above mentioned 
effect is diminished for the largest mesh size grid. Namely the virtual origin at high ReM appears to reach the same value 
of about 5 mesh sizes for each of the investigated Mach numbers. 

The decay exponent n, shown in figure 14, is substantially affected by the Mach number of the flow field. It 
is clear from the above figure that n is decreasing with increasing Mach number. The effect of the mesh size on the 
decay exponent can also be observed. It behaves similarly to the decay coefficient A. Namely for the lowest Mach 
number it increases with increasing mesh size/ReM. That means that for finer grids, i.e of small mesh size, there exists 
larger decay rates than for coarser grids. At a first glance the above statement appears to contradict previous notions 
based on fixed n fitting of the data, but if we consider equation (6.13) then the dissipation rate 8 is proportional to 
nA[(x/M)-(x/M)0]"(n+1). Thus e will increase if n decreases. 

When the Mach number increases the decay exponent n decreases substantially. From a value of 0.8 at M„ow 

=0.3, for instance, n drops to 0.3 at Mnow=0.6 in the case of ReM=200,000. This is a reduction of the decay of more than 
60% for a 100% increase in Mach number. Thus, it appears that the major effect of compressibility is a substantial 
reduction in the decay rate. The second interesting behavior of the exponent n is that at high Mflow it remains almost 
independent of ReM where it reaches a value of about 0.3. 

A typical decay of velocity fluctuations, as fitted by the power law, for the 5.08 mm mesh size grid is shown 
in figure 15. The velocity fluctuations are higher at higher Mach numbers which also correspond to higher ReM. The 
effect of higher velocity fluctuations can not simply be attributed to the increase of the mean Mach number and the 
associated compressibility effects of the flow but also to the increase of ReM. Although Mach number and Reynolds 
number are two different independent variables they may cause quite similar effects on the flow which may be difficult 
and some times impossible to distinguish clearly from each other. A 4-fold increase in pressure, for instance, which 
corresponds to 100% change in Mach number and Reynolds number, results in a 3 fold increase in the Mach number 
fluctuations M„ throughout the entire flowfield. Most probably this increase in M, and (u/U)2 can be attributed to both 
parameters, i.e. Mnow and ReM. 

10. Dissipation rate and length scales 
Figure 16a shows the dissipation rate of kinetic energy e for one grid (5x5) with mesh size M=5.08 mm at 

different flow Mach numbers. Two dissipation datasets are shown in this figure which have been computed by two 
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different methods. In the first method, e has been determined from the decay rate of turbulent kinetic energy by using 
equation (6.13). The second set of dissipation data has been computed from the dissipation spectra calculated through 
the relation (7.1). The two datasets agree reasonably well with each other particularly in the far field. 

From the data shown in figure 16a, it appears that e increases with increasing Mach number in all investigated 
flows with the M=5.08 mm mesh size grid. This behavior is quite similar to that of the decay of q2. Dissipation varies 
proportionally to x"""1 while q2 varies as x"n. It remains to be seen whether this effect is a Mach number effect or it is 
due to Reynolds number increase. 

The data shown in figure 16a are non-dimensionalized by M/U,3 and replotted in figure 16b where the same 
behavior can be observed: non-dimensional dissipation increases with flow mach number Mnow. However, in the case 
of coarser grids non-dimensional dissipation e M/U,3 is decreased with increased Mnow. Figure 16c shows values of the 
non-dimensional dissipation for the case of the 2x2 grid with mesh size M=12.7 mm. These data demonstrate that 
dissipation is reduced when the flow Mach number increases in the case of coarse grids. As will be seen later direct 
measurements of dissipation also confirm this conclusion. 

The difference between coarse and fine grids in the behavior of how the dissipation e M/U,3 varies with Mflow 

can be attributed to the effects of ReM in addition to the obvious reason of grid dependence. It should be noted that in 
the case of the fine grid with M=5.08 mm ReM reaches values from 59,000 to 102,000 while in the case of the coarser 
grid with M=12.7 mm ReM reaches values from 137,000 to 260,000. 

The dissipation rate of kinetic energy e for various mesh sizes is shown in figure 17 for the highest tested Mach 
number case. In this figure the effects of ReM/M at a fixed flow Mach number, Mflow can be depicted. The data in figure 
17 suggest that coarser grids, i.e. higher ReM produce lower dissipation rates, e, at constant M„ow when compressibility 
effects are high. In the absence of large compressibility effects, which are typical in the lowest tested Mach number 
flowfields, the reverse influence of the mesh size on e can be found as shown in figure 18. In this figure, dissipation data 
non-dimensionalized by the mean velocity and mesh size for the lowest Mach number tested flowfield of Mflow=0.35 
is plotted for various mesh sizes. The reverse trend is observed for eM/U3 in the absence of strong compressibility 
effects. In this case, the coarser grid with the largest mesh size and highest ReM shows the largest non dimensionalized 
dissipation rate of kinetic energy. Since the mean flowfield velocity U is equal for all plotted cases the effect presented 
in this figure is mainly due to the Mesh size M and ReM. 

Figure 18 also shows the dissipation rate data obtained with the vorticity probe. In this case the total dissipation 
rate was computed directly from the measured time-dependent velocity and density gradients. These data appear to be 
5% to 15% higher than the data obtained from the decay rate of turbulent kinetic energy. This difference is well within 
the experimental uncertainty associated with the measurements of dissipation. 

The data shown in figure 17 are non dimensionalized with M/U3 and replotted in figure 19. The effect of 
compressibility is rather striking at this M„ow=0.6 and the results consistently indicate that eM/U3 increases with 
decreasing mesh size/ ReM. 

Even in the case of the medium tested Mach number flowfield compressibility effects can be observed in the 
dissipation data shown in figure 20. These data also demonstrate that the coarser grids with the greater mesh sizes and 
higher ReM flowfield produce a lower dissipation rate e. The dissipation rate of kinetic energy for the medium tested 
Mach number follows the trend that exists for the highest tested Mach number and therefore suggests that the presence 
of compressibility effects are felt in this flowfield too. The quantitative difference of the degree of compressibility 
effects between Mflow =0.6 and Mnow =0.475 flowfields can be estimated upon closer observation of the data shown 
in figures 17 and 20. For almost a 4-fold increase in the mesh size and ReM the dissipation rate decreased 10 times for 
M„ow=0.6 and approximately 5 times for the Mf,ow=0.475 flowfield. This behavior also suggests that, as expected, higher 
Mach number flowfields introduce higher compressibility effects. 

The result of single measurement of total dissipation obtained with the multi-wire vorticity probe is also plotted 
in figure 20. The measurements were obtained in the flow with the M=12.7 mm mesh size grid and with Mflow=0.425 
which is lower than the flow Mach number of the rest of the data. This value of dissipation rate is also slightly higher 
than the values obtained from the decay rate of turbulent kinetic energy. 

The present measurements indicate that dissipation rate in addition to the particular grid used to generate the 
flow and the Reynolds number ReM, depends also on the flow Mach number M„ow. 

The dissipative length scale Le indicates how fast the advected turbulent kinetic energy q2 at a given location, 
is dissipated into heat. It is a longitudinal length scale since advection of q2 in the present flow takes place only in the 
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longitudinal direction. As Mach number increases the results of the present investigation show that the dissipative length 
scale Lc increases although the dissipation rate of turbulent kinetic energy, e, also increases for a given mesh size (see 
fig. 16). This increase in Le is attributed to the increase in q2 with Mach number which apparently is larger than the 
corresponding increase of E . 

A typical result is shown in figure 21. These data correspond to the three flowfields with different Mach 
numbers and are obtained with the same grid of mesh size M=12.7mm. It is interesting to observe that for the highest 
mean flow Mach number the dissipation length scale grows faster than and reaches values much greater than the medium 
Mach number flow case. This behavior can be attributed to higher compressibility and higher ReM effects which can 
cause such a drastic increase. In the case of fine grids (not shown here), however, the trend observed is reversed: the 
dissipation length Le decreases with increasing Mnow. For both grids i.e. the 5x5 and the 4x4 with M=5.08 mm and 
M=6.35 mm respectively Lc decreases with Mflow. The data indicate a fast dissipation process in flows produced by fine 
grids. 

The effect of the grid's mesh size on the dissipation length scale is shown in figure 22. The dissipation length 
scale Le increases with increasing mesh size and ReM. From this figure it can be seen that for the same mean Mach 
number a 5-fold or more increase in Ls occurs for a 3-fold increase in the mesh size/ReM. Thus the pivotal effect that 
the grid size exerts on the length scales in the flowfield is that coarser grids result is longer Le. It is also apparent from 
both previous figures that the dissipation length scale strongly depends on x/M and that it increases with downstream 
distance. 

The data presented in figure 21 for the highest Mach number flowfield shows large values of Lc which are 
indicative of a very slow dissipation process. These values exceed the shock tube diameter D=0.305 m at distances 
x/M>130 and about x/M=200 reach values of Le=0.5 m =1.63 D. In general, it is expected that at large distances from 
the grid the growth of eddies due to amalgamation will be affected by the cross-sectional size of the facility which in 
the present case is described by the diameter D. This requires that at any point in the flow the lateral length scale L22 

should be smaller than D. Since L22 is related to the mesh size of the grid M the above requirement introduces for 
consideration the parameter D/M which has to be reasonably high in order to avoid these wall effects on the flow 
development. In this context, however, Le represents a longitudinal length scale which characterizes the dissipative 
motions which are mostly taking place at the level of small scales eddies which are isotropic although, indirectly, they 
may be affected by the motion of the large eddies. Thus no direct effect of D is expected on Lc and therefore Le can 
reach values of the order of D. 

In order to estimate the length scales in the longitudinal £, direction and normal £2 direction the cross correlation 
coefficients 

u.(x)u.(x+£) 

\/u7w/uj
2(x^t) 

were evaluated by two point measurement in the E,2 direction and from auto-correlations in the £, direction after invoking 
Taylor's hypothesis. 

Figure 23 shows the Ln(£,) scale in the longitudinal direction for the three different flow cases. There exists 
some scatter in the data in each particular case which is attributed to the various grids used. No attempt has been made 
to present any ReM effects since no clear trend or pattern among the data obtained could be identified. From the data 
of figure 23, it can be seen that the integral length scale increases with downstream non-dimensional distance x/M for 
all investigated cases. It is also evident that L„ in the case of M„ow =0.475 is higher than in the case of Mflow =0.36. 
However when the flow Mach number increases to Mflow =0.6 and therefore stronger compressibility effects are present, 
then the values of the integral length scale drop. 

The two point correlation r„(£2) in the lateral direction £2 of the longitudinal velocity fluctuations is shown in 
figure 24. These data were obtained by a specially designed cross correlation probe consisting of six parallel wires and 
three temperature wires separated from each other by 1 mm. Not all the curves cross the zero line and therefore it is very 
difficult to integrate them in order to obtain the classically defined length scale in the lateral direction. However the 
slopes of these curves are indicative of their trend. It is rather obvious that the length scales are reduced with increasing 
flow Mach number. This behavior is very similar to that of L, ,(£,). 
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The effect of Mach number on Taylor's microscale computed from  e = 15 v 
f p,   \2 2 

= 15v—      is shown in 
,dx) X 

figure 25 for three different Mach numbers and for one grid with mesh size 12.7 mm. Taylor's microscale appears to 
increase with increasing Mach number. Increase of the Taylor's microscale is also observed in flowfields produced by 
coarser grids. This is shown in figure 26 where the data of four different grids are plotted for the same flow Mach 
number. It is clear that the coarser the grid, larger mesh size, the greater the Taylor's microscale. The dependance 
(increase) with increasing x/M is evident, as shown earlier for the dissipation length scale, is also shown for the Taylor's 
microscale. However, in the case of the grid with M=5.08 mm, which is considered as fine grid, X appears to decrease 
with Mflow (not shown here). This difference in the behavior between the coarse and fine grids is a direct outcome of a 
similar behavior in the dissipation distribution which was discussed earlier in reference to dissipation data shown in 
figures 16b and 16c. 

The effect of the flow Mach number on the viscous scales has been investigated next. The data for three 
different Mach numbers are shown in figure 27 for the case of the 5x5 grid with mesh size 5.08 mm. They all increase 
with downstream distance. The results also show that as the Mach number increases, the Kolmogorov's length scale, 
ri decreases. This viscous scale appears to increase with increasing Mflow even in the case of coarse grids. 

The effect of mesh size/ReM on T) is shown in figure 28 where the data are plotted for four different mesh sizes 
and for a decaying flowfield at a constant mean Mach number of 0.6. Similar results are obtained for the rest of the 
tested flowfields. It appears that r\ increases with increasing M/ReM, a behavior which is similar to that of A or L„. 

The last two figures (27 and 28) demonstrate the effects of compressibility on the viscous scales. In particular, 
compressibility effects appear to suppress their size. This behavior imposes a severe requirement for spatial resolution 
at high Mach number turbulent flows. The present measurements indicate values of r) ranging from 0.015 to 0.06 mm. 
The size of the probes expressed in terms of Kolmogorov's length scales appears to be T)w=lw/r)=13 for the greatest scales 
and 52 for the smallest scales. The scales at error start at about half of these values, 7 and 26 respectively. Based on 
these values, which determine the upper limit of the valid part of the spectrum, estimates of the power spectral density 
of the spatially filtered scales have been obtained from Wyngaard's (1969) work for subsonic flows. It appears that the 
spatially filtered scales amount for about 15% of the total spectral density of velocity fluctuations for measurements 
close to the grid where T) is small and less than 4% for measurements where r] is larger. The high resolution of the hot 
wire probes allows us to conclude that the results obtained in regard to the compressibility effects on the viscous scales 
are not biased. In addition the estimates of dissipation obtained from the decay rate of q2 seem to be much less affected 
by the effects of inadequate spatial resolution than those obtained from spectra. One reason to explain this immunity 
of e to spatial resolution errors is a possible cancellation of uncertainties in the measurements of q2 when the longitudinal 
gradient dq2/dx is computed. Thus the uncertainty in the estimates of r) may be considerably lower than the 4% to 15% 
range quoted above. 

In summary, the results of the present investigation indicated that, dissipation rate, dissipation length scale and 
Taylor's microscale are strongly affected by the flow mach number Mflow. In flows produced by fine grids dissipation 
increases with increasing Mflow while Le and X are reduced. In the case of flows generated by coarse grids, dissipation 
decreases with increasing Mnow and Lc and A. increase with Mnow. Lateral integral length scales and viscous length scales 
are reduced with increasing Mflow. This work also demonstrated that at high Mach numbers flows, all length scales i.e. 
Lc, X and r\ increase with increasing mesh size or ReM. 
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11. Vorticity and enstrophy 
Four additional experiments were carried out with the new multi-wire vorticity probe. Table 4 shows the bulk 

flow parameters of the experiments which were performed at two different flow Mach numbers and with two different 

grids. 

No Grid x/M Mflow U, (m/s) p (kg/m3) P (KPa) 

2x2 48 0.308 121 1.59 155 

2x2 48 0.388 151 1.74 174 

3x3 72 0.362 139 1.7 170 

3x3 I 72 0.425 161 1.84 U 

Table 4: Bulk flow parameters in vorticity measurements 

Figures 29 and 30 show the power spectral density of the turbulent kinetic energy Vi UjU, and enstrophy '/zWjWi 
weighted by the wavenumber k,=2Tt/A as measured in the present investigation for the case of the 2x2 grid. The 
streamwise wavenumber k,=27tf/U1 was computed by assuming the local longitudinal mean velocity as the convection 
velocity (Taylor's hypothesis). Wavenumbers have been non-dimensiolized by the mesh size M. In the case of 
Mflow=0.308 which is shown in figure 29, the maximum value of the spectral density of turbulent kinetic energy occurs 
at approximately k,M=4.5 while the maximum value of the spectral density of enstrophy occurs at about k,M=7. This 
difference in the maxima of spectral energies indicates a shift towards higher wavenumbers of enstrophy fluctuations 
which suggests that they are mainly a result of a greater proportion of contributions by the smaller scales whereas the 

kinetic energy comes from relatively larger eddies. 
In the case of Mflow=0.388, shown in figure 30, the maximum energy of T.K.E. is found to occur at about the 

same wavenumber as in the case of Mflow=0.308 i.e. at k,M=4.5, while the maximum energy of enstrophy occurs at a 
lower wavenumber k,M=5.8. Once more, the data show that there is a shift towards higher wavenumbers in the case 
of enstrophy maxima. However, it appears that increasing M„ow reduces the difference between the wavenumbers where 
the maxima of kinetic energy and enstrophy occur. If one considers that the peak in T.K.E. represents the size of large 
energy containing eddies and that the peak in enstrophy represents mostly small energy dissipating eddies then it would 
be expected that this difference or shift increases with increasing Reynolds number. The fact that this shifts decreases 
with Mach number in the present case indicates that the effect of Mnow in reducing this difference becomes stronger than 

the effect of Reynolds in increasing it. 
Similar observations can be made in the case of the 3x3 grid and the two experiments carried out with this grid. 

Figure 31 and figure 32 show the spectral densities of TKE and enstrophy for the Mflow=0.362 and Mflow=0.425 cases 
respectively. The maximum spectral density of TKE occurs at about k,M=2 in both flows. However, the maximum 
spectral density of enstrophy occurs at k,M=5.6 in the case of M„OW=0.362 and at k,M=3.8 in the case of Mncnv=0.425. 
Thus the initial wavenumber difference of 3.6 observed in the lower Mach number case is being reduced by about 50% 

in the case of Mflow=0.425. 
Figure 33a shows a semi-logarithmic plot of the probability density function (pdf) of the three vorticity 

components for the case of M=12.7 mm and Mflow=0.308. The quantity M/U, has been used to non-dimensiomalize 
vorticity. The data shows that the pdfs of the vorticity components overlap substantially as it is expected to occur under 
isotropic conditions. The present data also indicate that these pdfs have a Gaussian distribution. As the flow Mach 
number increases to Mflow=0.388 the pdfs of vorticity start to deviate from the Gaussian distribution (see fig. 33b). The 
data show that the three pdfs reasonably collapse on each other indicating a good degree of isorropy. However the 
probability of higher amplitudes which are characterized by the tails of the distributions are lower than the probability 
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predicted by the Gaussian distribution. This is the first evidence to that compressibility starts to affect the high amplitude 
events of vorticity first. 

Similar behavior can be identified in the pdfs of vorticity components for the case of M=8.47 mm. These pdfs 
are plotted in figures 34a and 34b for the flow cases with Mnow=0.362 and Mflow=0.462 respectively. Both figures 
indicate a good degree of isotropy of the vorticity field. In the higher M„ow case, as in the case with the M=12.7 mm grid, 
the tails of the distributions start to deviate from the Gaussian distribution, indicating a possible effect of compressibility. 

The pdfs of the enstrophy O\<J\ for the two cases of experiments with the two different grids, M=12.7 mm (2x2) 
and M=8.46 mm (3x3), are shown in figure 35. Enstrophy values have been non-dimensiolized by (M/U,):. Enstrophy 
is a very significant quantity in fluid dynamics. It is not only related to the solenoidal dissipation as was mentioned in 
section 6, but also to the invariants of the strain-of-rate matrix Si}. In addition, enstrophy is a source term in the transport 
equation of dilatation S^.: 

^fel   =   -S   s      +   1(0(0     +     l    9P   9P      1      ^       +   Al^i <1U> 
Dt ik ki      2   k  k      p2 dxk dxk   p dxköxk       dxk p axq 

This transport equation relates the change of dilatation along a particle path which can be caused by the straining action 
of the dissipative motions (siksik) as well as by the rotational energy of the spinning motions as it is expressed by the 
enstophy 1/20^0^. Pressure and density gradients as well as viscous diffusion can also affect dilatation. It should be note 
that the above transport equations reduces to the well known Poisson equation 

1    a2p 1 (11.2). 
 c— = — <■    + -wk"k 

p dx. dx ' 2 

for incompressible flows of constant density (s^O). 
The distribution of the pdfs shown in figure 35 indicates that most of the data i.e. data with high frequency of 

occurence are mainly associated with low amplitude fluctuations of enstrophy. However, it appears that there exists rare 
events, i.e. events with low probability of occurence which have extremely high amplitude of enstrophy and which may 
be of significant importance in the dynamics of the fluid. This behavior observed in all experiments is indicative of 
highly fluctuating quantities. 

Since the distributions shown in figure 35 are not normalized, the area under each them is indicative of the 
mean value of enstrophy. The data shows that enstrophy decreases with increasing the Mnow. In the case of the 2x2 grid 
with M=12.7 mm, for instance, the mean value of enstrophy reduces by 25% when the flow Mach number increases 
by about 25%. In the case of the 3x3 grid enstrophy is decreased by 50% when the Mach number increases by 17%. 
Thus it appears that the effect of compressibility is to reduce enstrophy fluctuations. Even in the present cases of rather 
weakly compressible flows the effects on enstrophy are rather substantial. 

It is very interesting to compare the effects of compressibility on velocity fluctuations with those on enstrophy 
fluctuations. Velocity fluctuations are increased with increasing Mflow while enstrophy fluctuations are decreased. Are 
these two results incompatible? The answer is no, if one considers that enstrophy varies as u2/X2 or better in non- 
dimensional terms as (u/U)2(M/A)2. It appears that (XM)2 increases substantially faster with Mnow than (u/U)2. In fact 
the present data confirm that. In addition, the variation of dissipation rate with the flow Mach number is exactly the same 
as that of enstrophy. Thus the conclusion that compressibility decreases enstrophy fluctuations and increases velocity 
fluctuations, appears to be genuine. 

Figure 36 shows distributions of the pdfs of the dilatation l/pDp/Dt=-skk as measured in the four different 
experiments of the present investigation. Values are non-dimensionalized by M/U,. The mean value of dilatation in this 
homogeneous flow is expected to be zero and the experimental data confirm it. The level of dilatation fluctuations is 
about 1/8 to 1/20 of the level of vorticity fluctuations. A comparison of the level of dilatational fluctuations with the 
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range of vorticity fluctuations as depicted from the pdfs shown in figures 33, 34 and 36 indicates that the former are 
about 5% to 7.5% of the latter in the case of the 2x2 grid (M=12.7 mm) depending on M„ow, and 13% in the case of the 
3x3 grid (M=8.4 mm). These values are typical of weakly compressible turbulence with rather low fluctuations of Mach 
number (turbulent Mach number). Nevertheless compressibility effects are detectable. For instance, the data of figure 
36 in the case of the 2x2 grid clearly show that dilatational fluctuations increase considerably with Mflow, while vorticity 
and enstrophy fluctuations decrease. 

In the case of the 3x3 grid no substantial differences between the flows with two different Mach numbers could 
be detected. However, this may be an effect of the way dilatation is non-dimensionalized by M/U, since dimensionalized 
values of 1/pDp/Dt fluctuations are about 20% higher in the case of the M„OW=0.425 than those in the lower Mflow=0.388 
case. 

Distribution of pdfs of the non-dimensionalized quantity s^s^M/U,)2 which represents the dilatational part 
of dissipation are shown in figure 37. This term in the present cases of rather weakly compressible turbulence is about 
50 to 100 times smaller than the corresponding solenoidal dissipation. In that sense its direct effect on turbulence maybe 
not significant. Nevertheless it is important to understand how it changes with Mach number. In the case of the 2x2 grid 
(M=12.7 mm) compressible dissipation increases with Mflow while solenoidal dissipation decreases. The data also show 
that rare events with stronger amplitudes are present in the Mflow=0.425 case than in the M,,ovv= 0.388 case. 

No differences in the distributions of compressible dissipation between the two flows could be discerned in 
the case of the 3x3 grid. However, this effect can be attributed to the non-dimensionalizing parameter (M/U,)2 because 
the raw, dimensionalized data indicated a 50 % increase in the values of compressible dissipation. 

The transport equation of vorticity 

Deo. i  3p dp       c     ?\ (11-3) 

describes four dynamically significant processes for the vorticity vector co, namely that of stretching or compression 
and tilting by the strain sik, vorticity generation through dilatation, baroclinic generation through the interaction of 
pressure and density gradients and viscous diffusion. In the present work the first two terms have been evaluated 
directly. The baroclinic term could not be measured but order of magnitude analysis showed that it is rather small in 
the present flow. If the viscous term can be also ignored since its magnitude is also small, then the change of vorticity 
of a fluid element in a Lagrangian frame of reference can be entirely attributed to vortex stretching and/or tilting and 
to dilatational effects. 

Figure 38 shows distributions of the pdfs of the longitudinal component of the stretching vector slka>k for the 
four experiments carried out in the present investigation. Values are non-dimensionalized by (M/U, )2 and plotted in 
semi-logarithmic scale. Typical characteristic of all distributions is their long tails which are indicative of strong but rare 
events with substantial contribution to the stretching process. The data also show that stretching fluctuations decrease 
with increasing Mflow. In both experiments with the two different grids, mean and fluctuating stretching appears to be 
lower in the cases of high M„ow than in the cases of low M„ow. This behavior is not surprising because vorticity is 
reduced with increasing flow Mach number and therefore source terms are expected also to decrease. However the 
dilatational generation of vorticity is affected by the flow Mach number in the opposite way. Figure 39 shows the 
distributions of the pdfs of Q^^ which describes the generation of vorticity by the expansion or compression of the rate 
of change of the specific volume since -l/pDp/Dt=l/VDV/Dt=skk. In the case of the 2x2 grid (M=12.7 mm), substantial 
increase in the level of fluctuations can be observed when the flow Mach number increases. This indicates that 
dilatational fluctuations, which increase with increase Mnow, dominate the process over vorticity fluctuations which are 
reduced with increased Mflow. 

No substantial differences can be observed between the two distributions in the case of the 3x3 grid (M=8.4 
mm). This again can be attributed to the way the data are made non-dimensional, since the raw dimensionalized data 
show that compressibility increases the fluctuations of w,skk. The long tails of the distributions also suggest than rare 
but violent events are substantially affecting these processes. 

Some further insight of the dynamical processes involved in these flows can be gained by looking at the 
instantaneous signals of the various quantities present in the transport equations mentioned above. Figure 40a shows 
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Signals of dissipation co^, dilatational dissipation skkskk, the three components of the vorticity stretching vector slk0),., 
s2ka)k, s2ko)k, and the three components of the dilational stretching vector co.Sy., co-^, o^. Each signal has been 
normalized by its r.m.s. and has been displaced by a multiple of 5 r.m.s. units for better visual aid. All signals exhibit 
a rather strong intermittent behavior which is characterized by bursts of high amplitude events, which sometimes reaches 
values up to 5 to 8 r.m.s. units, followed by less violent periods of time. Several of these bursts are evident in all signals, 
suggesting the existence of a dynamical flow phenomenon which may be the common cause. 

It is also interesting to observe that the correlation between any two of these signals seems to be higher during 
any of the those violent events. In general there is some statistical correlation in several of the signals. For instance, a 
correlation coefficient of about ±0.04 has been obtained between entrsophy and any of the vorticity stretching 
components. During violent events which involved substantial vorticity stretching or compressing activities, this 
coefficient can be 2 to 5 times higher. 

A comparison between o\cok and s^s^, shows that there is some correlation between them since some bursts 
can be observed on both signals. However there is a number of strong events on one signal without a corresponding 
event on the other. Figure 40b shows a portion of the previous signals expanded in time, with annotated boxes where 
several of the previous discussed characteristics and features are highlighted. The first box, centered at about time=2212, 
for instance, shows strong events which can be identified on all signals. The second box at about time=2260 shows an 
event detectable on cokcok but not on s^s^. The third box at about time=2330 shows an event on skkskk without a 
corresponding counterpart on o)kcok. The signals also indicate that the durations of the strong events on s ^ are 
considerably shorter than the events identified on the o)ko)k signal. 

The signals obtained in the experiment with Mflow=0.388 and grid of M=12.7 mm are shown in figure 41. They 
exhibit similar characteristics as the signals of figure 40. However the amplitude and the frequency of these bursting 
events appear to be higher while their duration is shorter than in the experiment with the lower Mach number. 

12. Conclusions 
The effects of compressibility in a nearly homogeneous and nearly isotropic flow of decaying turbulence have 

been investigated experimentally by carrying out high resolution measurements in a large scale shock tube research 
facility. A variety of grids of rectangular pattern of diferrent mesh size was used to generate the flow field. The Reynolds 
number of the flow based on the mesh size, ReM, ranged from 50,000 to 400,000 while the turbulent Reynolds number 
Re,, based on Taylor's microscale X was between 200 and 700 which constitutes one of the highest scale ever achieved 
in laboratory flow. The range of Mach number of the flows investigated was between 0.3 and 0.6 which was low enough 
to assure a shock free flow and reasonably high enough to contain compressibility effects. 

The effects of compressibility can be classified into two categories. The first category includes those effects 
which have a direct impact on the flow. Compressible dissipation, for instance, is a typical example of a quantity which 
expresses a direct effect of compressibility on total dissipation. The indirect effects comprise the second category. This 
include effects which change the local or global behavior of the flow and therefore may cause significant changes of 
the incompressible part of the flow. Increasing the Mach number of the flow, for instance, can change the level of 
turbulent fluctuations in the flow which may subsequently affect the dissipation rate, particularly the incompressible 
part which accounts for most of the total dissipation in cases like the present subsonic flow. Direct effects of 
compressibility on turbulence may be described by the turbulent Mach number M,, while indirect effects on turbulence 
may be characterized by the flow Mach number Mflow, and the Reynolds number ReM. The parameters M,, Mnow and 
ReM, however, are not completely independent from each other. A change in any of the three may cause a change in the 
other two. In that respect, the effects which each of the nominally independent variables impose on the flow may be 
difficult to distinguish. An attempt has been made here to identify the effects of Mnow and ReM on homogeneous and 
isotropic turbulence. 

The isotropy of the present flow was verified experimentally and it was found to be within the range reported 
for incompressible flows. In fact, it was established for the first time that isotropic compressible turbulence at moderate 
subsonic Mach numbers can be setup experimentally. The decay of Mach number fluctuations was found to follow a 
power law behavior similar to that describing the decay of incompressible isotropic turbulence 

23 



M,2=B 
/o 

where B, (x/M)0 and n are constants depending on the flow Mach number as well as on the ReM and grid. These 
constants have been determined concurrently so that the residual deviation from the original data is minimized. This 
approach represents a departure from previous practices where one of the three parameters was fixed and the other two 
were determined through a best fit of the data procedure. In that context, direct comparison of the present data with 
previously obtained values of any of the three constants may not be feasible. A direct consequence of the procedure 
followed in this investigation may be the fact that the exponent n has been found to reach values below 1, which 
indicates, in principle, a slower decay rate than that found in many previous cases under the assumption that one of the 
three unknown constants should be fixed. 

In the present work, it was possible to investigate the effects of the Mach number and ReM on the flow 
development independently from each other. The virtual origin tends to a reasonably constant value of 4.5 at high ReM 

which is independent of the flow Mach number. The decay coefficient B and the decay exponent n decrease with 
increasing Mach number while the virtual origin (x/M)0 increases with increasing Mach number at a fixed ReM. 

Most probably the mechanism responsible for this effect is the inherently slow growth rate of compressible 
shear layers emanating from the cylindrical rods of the grid. Figure 42a shows a typical merging of shear layers to form 
an isotropic flow in the case of incompressible flows. The case of compressible shear layers is depicted in figure 42b 
where it is shown how a lower growth rate can result in longer virtual origin. If a shock wave had been formed in the 
vicinity of the grid as in the case of Zwart et al. (1996) the decay rate would have been drastically affected. Shock waves 
in the present case is not likely to appear at the present Mach numbers because the open area of the grids used is greater 
than that required to choke the flow through the grids. Therefore it is plausible to attribute the present results to the lower 
growth rate of compressible shear layers. 

The dissipation rate of turbulent kinetic energy was found to increase with increasing flow Mach number for 
fine grids and decrease with increasing Mflow for coarse grids. As a result Lc and X follow similar pattern: they both 
increase with increasing Mflow and decrease with increasing Mnow in the case of fine grids. 

The results of the present investigation indicated that, for fine mesh grids, Le and X decrease with increasing 
Mflow and increase with increasing Mflow in the case of flows produced by coarse grids. 

All longitudinal length scales increase with increasing Mnow while lateral integral length scales and viscous 
length scales are reduced with increasing M„ow. This work also demonstrated that at high Mach numbers flows, all length 
scales i.e. Lc, X and r| increase with increasing mesh size or ReM. 

An attempt has also been made to measure all time-dependent velocity gradients involved in vorticity, its 
stretching, enstrophy and dissipation rates with adequately spatial and temporal resolution. This allowed estimates of 
dilatation s^, compressible dissipation s^2 and compressible stretching cOjSy. to be obtained. These quantities are directly 
associated with compressibility effects. A common feature of all these quantities is that their fluctuations properly 
normalized by M and U„ increase with increasing Mach number of the flow. Although this behavior may be expected, 
if one considers that in compressible shear layers increasing Mnow suppresses turbulent fluctuations then this conclusion 
is surprising. 

The results of the present investigation have also shown that enstrophy fluctuations which comprise the 
solenoidal part of dissipation are reduced with increasing Mflow, a conclusion which is also verified by the results of 
dissipation obtained through the decay rate of turbulent kinetic energy for the case of coarse grids. 

The time-dependent signals of enstrophy w^, dilatation s^, compressible dissipation s^2, and the three 
components of the stretching vectors o^Sy and 0)jSkk indicated a highly intermittent behavior which is characterized by 
bursts of high amplitude followed by less violent periods of time. The results also show that the mean values of all these 
quantities are considerably smaller than their r.m.s. values which suggests that time-averaged vorticity transport 
equations are of very limited value in understanding vorticity related phenomena. 

Table 5, presented at the end of this section, summarizes the conclusions for the parameters that were 
investigated in this work and their response to an increase of the mean flow Mach number and an increase in the mesh 
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size/ReM. In this table three symbols are used: ( I ) represents that the parameter increases with increasing Mflow or 
increasing mesh size/ReM, 
( 1 ) represents that the parameter decreases with increasing Mflow or increasing mesh size/ReM and finally ( I ) 

represents that the parameter because of compressibility effects does not present a specific trend with increasing Mflow 

or increasing mesh size/ReM. 
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Table 5: Summary of conclusions for the decaying isotropic flowfield. 
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Figure 38: Probability distributions of stretching component cokskl 
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Figure 39: Probability distributions of compressible stretching component co,skk 
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Figure 40a: Typical signals of various quantities normalized by their r.m.s. value. 
(Actual signals are displaced) 
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Figure 40b: Typical signals of various quantities normalized by their r.m.s. value. 
(Actual signals are displaced) 
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Figure 42a: Incompressible shear layer growth. 

Figure 42b: Compressible shear layer growth. 


